
A Brief Review of Sparse Principal Components
Analysis and its Generalization1

A. Bhattacharjee* R. Mondal* R. Vasishtha* S. S. Banerjee*

*Department of Mathematics and Statistics
Indian Institute of Technology, Kanpur

April 23, 2022

1Main References: Zou et al. (2006), Leng and Wang (2009)
1 / 29



Contents

1 Introduction

2 SPCA
Direct Sparse Approximation
SPCA Criterion
Numerical Solution
Adjusted Total Variance

3 GAS-PCA

4 Simulation

5 Data Analysis

6 References

2 / 29



Motivation of SPCA

Properties of Ordinary PCA

Dimension reduction.

Minimum loss of information.

Drawback of Ordinary PCA

Each PC is a linear combination of all the p variables and the loadings
are non-zero.
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LASSO and Elastic Net

Consider a regression model with n observations and p regressors. Yn×1
is the response vector. Xn×p is the design matrix.

Lasso estimate of regression parameter is given by,

β̂L = arg min
β

(Y−Xβ )T (Y−Xβ )+λ

p

∑
j=1

| βj |

Elastic Net estimate of regression parameter is given by,

β̂E = (1+λ2)

{
arg min

β

(Y−Xβ )T (Y−Xβ )+λ1

p

∑
j=1

| βj |+λ2

p

∑
j=1

| βj |2
}
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PCA through SVD

X is an n×p data matrix.

Without loss of generality it can be assumed that the column means of X
are zero.

Suppose that the SVD of X is given as.

X = UDVT

Z = UD are the Principal Components.

The columns of V are the corresponding loadings of the PCs.
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Direct Sparse Approximation I

Theorem (1)

For each i denote the i-th PC by Zi = UDi Consider a positive λ and the ridge
estimate is given by,

β̂R = arg min
β

||Zi −Xβ ||2 +λ ||β ||2 (1)

Let v̂ = β̂R
||β̂R ||

, then v̂ = Vi .

Here Di is the i-th column of D and and Vi is the i-th column of V.
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Direct Sparse Approximation II

Theorem (1) establishes the connection between PCA and the regression
method.

It is possible to get sparse PCs by considering the following minimization
problem,

β̂ = arg min
β

(Zi −Xβ )T (Zi −Xβ )+λ ||β ||2 +λ1||β ||1 (2)

Theorem (1) depends on the results of PCA and so it is not an alternative
procedure.
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SPCA Criterion I

Theorem (2)

Suppose we are considering the first k PCs. Let Ap×k = [α1, . . .αk ] and
Bp×k = [β1, . . .βk ]. Then for any λ > 0 let,

(Â, B̂) = arg min
A,B

n

∑
i=1

||xi −ABT xi ||2 +λ

k

∑
i=1

||βj ||2 (3)

subject to AT A = Ik×k

Then β̂j ∝ Vj for j = 1,2, . . . ,k.
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SPCA Criterion III

Adding LASSO penalty to (3) and considering the following optimization
problem,

(Â, B̂) = arg min
A,B

n

∑
i=1

||xi −ABT xi ||2 +λ

k

∑
i=1

||βj ||2 +
k

∑
j=1

λ1,j ||βj ||1 (4)

subject toAT A = I

we can carry on the connection between PCA and regression using the
LASSO approach to produce sparse loading. (4) is referred to as the SPCA
criterion hereafter.
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Numerical Solution

We discuss an algorithm to minimize the SPCA criterion function (4).
We note that (4) can be re-written as:

tr(XT X)+
k

∑
j=1

(
β

T
j (XT X+λ )β T

j −2α
T
j XT Xβj +λ1,j |βj |1

)
Thus given A, it is basically k independent elastic net problems. (4) can also
be rewritten as:

tr(XT X)−2tr(AT XT XB)+ trBT (XT X+λ )B+
k

∑
j=1

λ1,k |βj |1

Thus if B is fixed, we should maximize tr(AT (XT X)B subject to AT A = Ik .
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Numerical Solution

Theorem
Let A and B be p×k matrices and B has rank k. Consider the constrained
maximization problem,

Â = argmax
A

tr(AT B) subject to AT A = Ik

Suppose the SVD of B is B = UDV T , then Â = UV T .
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General SPCA Algorithm

Step 1: Initialize A as V [,1 : k ], the loadings of first k ordinary principal
components.
Step 2: Given fixed A, solve the following “naive” elastic net problem for
j = 1, . . . ,k

βj = argmin
β ∗

β
∗T
j (XT X+λ )β ∗T

j −2α
T
j XT Xβ

∗
j +λ1,j |β ∗

j |1

Step 3: For each fixed B, find SVD of XT XB = UDV T . Then update
A = UV T .
Step 4: Repeat steps 2-3 until B converges.
Step 5: Normalization: V̂j = βj/|βj |, j = 1, . . . ,k
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Adjusted total variance

The ordinary principal components are uncorrelated and their loadings
are orthogonal, i.e., if Σ̂ = XT X, then VT V = Ik and VT Σ̂V is diagonal.

PCs obtained by SPCA are not necessarily uncorrelated.

Suppose Ẑ be the modified PCs. If they are correlated, then tr(Ẑ T Ẑ )

does not yield the correct total variance explained by Ẑ .
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Adjusted total variance

We define Ẑj ·1,...,j−1 as the reminder of Ẑj after adjusting the effects of of
the remaining PCs, i.e.

Ẑj ·1,...,j−1 = Ŷj −H1,...,j−1Ŷj

Then the adjusted variance of Ẑj is |Ẑj ·1,...,j−1|2

To easily calculate the adjusted variance easily, we use QR
decomposition. Let Ẑ = QR, where Q is orthonormal and R is upper
triangular, then

|Ẑj ·1,...,j−1|2 = R2
j ,j

Clearly the explained total variance is equal to ∑
k
j=1 R2

j ,j .
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Problem with SPCA: Using Adaptive LASSO

Problem: When p ≪ n, the excessive shrinkage equally applied by lasso
to each coefficient seems to be problematic, at least in the least-squares
setting (Zou (2006)).

Solution: Modify the lasso penalty so that different shrinkage can be
used for different coefficients, leading to a consistent selection of the
important coefficients with high efficiency. (Adaptive LASSO, Zou
(2006))
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GAS-PCA

SPCA is improved upon by modifying (4) in the following two ways:
1 LASSO method is replaced by Adaptive LASSO.
2 The least-squares objective function in S-PCA is replaced by a generalized

least-squares objective function.

Intuitive Justifications:
1 Using generalized least squares allows incorporates a broader class of

estimators.
2 If more shrinkage is used for the zero coefficients with less shrinkage for the

nonzero ones, an estimator with higher efficiency may be obtained.

16 / 29



GAS-PCA criterion

Minimize the following general least-squares objective function:

d0

∑
j=1

{
(αj −βj)

′Ω̃(αj −βj)+
d

∑
k=1

λjk |βjk |
}
, (5)

where Ω̃ is a positive definite matrix with a probabilistic limit Ω, a positive
definite matrix, referred to as the kernel matrix.

BIC criterion:

BICλ j = (αj −βj)
′Ω̃(αj −βj)+dfλ j ×

logn
n

.

Here dfλ j is the number of nonzero coefficients identified in β̂λ j
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Choice of Ω̃: LSA

LSA: Estimator produced by minimizing the following least-squares–type
objective function (Wang and Leng (2007)):

(θ̂ −θ)′ ˆcov(θ̂)(θ̂ −θ) +
d

∑
k=1

λk |θk |.

Choice of Ω̃: cov−1(β̃j).

No simple formula exists for cov−1(β̃j).

ˆcov(β̃j) = covs(β̂
boot
j ), where β̂ boot

j are bootstrap samples drawn from
N (0, Σ̃).
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Theoretical Results: Some Notations

an = {λjk : βjk ̸= 0 : 1 ≤ j ≤ d0,1 ≤ k ≤ d}
bn = {λjk : βjk = 0 : 1 ≤ j ≤ d0,1 ≤ k ≤ d}
We fix α̂λ j to be fixed at ᾱj ∈ Rd

β̄λ j = argminβj
{(ᾱj −βj)

′Ω̃(ᾱj −βj)+∑
d
k=1 λjk |βjk |}

sj = {1 ≤ k ≤ d : βjk ̸= 0}
ŝBIC

j = {1 ≤ k ≤ d : β̄λ jk ̸= 0}
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Theoretical Results

Theorem
Assume that ᾱj −βj = Op(n−1/2) and that Ω̃ converges in probability to some
positive definite matrix Ω,

√
nan → 0, and

√
nbn → ∞. We have:

1 β̄λ j −βj = Op(n−1/2)

2 P(β̄λ jk = 0)→ 1 for every βjk = 0.
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Theoretical Results

Theorem
Assume that ᾱj −βj = Op(n−1/2) and that Ω̃ converges in probability to some
positive definite matrix Ω. We have:

P(ŝBIC
j = sj)→ 1.
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Simulation Example

We first created three hidden factors

V1 ∼ N(0,290), V2 ∼ N(0,300)

V3 =−0.3V1 +0.925V2 + ε, ε ∼ N(0,1)

V1,V2 and ε are independent.
Then 10 observed variables were generated as the follows
Xi = V1 + ε1

i , ε1
i ∼ N(0,1), i = 1,2,3,4,

Xi = V2 + ε2
i , ε2

i ∼ N(0,1), i = 5,6,7,8,
Xi = V3 + ε3

i , ε3
i ∼ N(0,1), i = 9,10,

22 / 29



Simulation

Table: Comparision of performance of SPCA and GAS-SPCA

SPCA GAS-SPCA
PC1 PC2 PC3 PC1 PC2 PC3

1 0 0.499 0 0 0.500 0
2 0 0.500 0 0 0.500 0
3 0 0.500 0 0 0.500 0
4 0 0.501 0 0 0.500 0
5 0.499 0 0 0.500 0 0
6 0.500 0 0 0.500 0 0
7 0.500 0 0 0.500 0 0
8 0.500 0 0 0.500 0 0
9 0 0 0.707 0 0 0.707

10 0 0 0.707 0 0 0.707
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Pitprops data

n = 180 and p = 13.

Table: SPCA

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.477 0 0 0 0 0
length -0.476 0 0 0 0 0
moist 0 0.785 0 0 0 0
testsg 0 0.619 0 0 0 0
ovensg 0.177 0 0.641 0 0 0
ringtop 0 0 0.589 0 0 0
ringbut -0.250 0 0.492 0 0 0

bowmax -0.344 -0.021 0 0 0 0
bowdist -0.416 0 0 0 0 0
whorls -0.400 0 0 0 0 0
clear 0 0 0 -1 0 0
knots 0 0.013 0 0 -1 0

diaknot 0 0 -0.016 0 0 1
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Pitprops data

Table: GAS-SPCA

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 0 0 0 0 0 0
length 0 1 0 0 0 0
moist 0 0 0 0 0 0.240
testsg 0.043 0 0 0 0 0
ovensg 0 0 0 0 0 -0.971
ringtop 0.572 0 0 0 0 0
ringbut 0.461 0 0 0.124 0 0

bowmax 0 0 0 0 0 0
bowdist 0 0 0 0 0 0
whorls 0 0 0 0.438 0 0
clear 0.376 0 0 -0.891 0 0
knots 0 0 0 0 1 0

diaknot -0.563 0 0 0 0 0
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Teaching data

This dataset is about the teaching evaluation scores of 251 courses
taught in the Peking University.

Each observation corresponds to one course taught during the period
from 2002 to 2004, and records the average scores on the students’
agreement with the nine statements.
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Teaching data

Table: SPCA

Variable PC1 PC2 PC3
Q 1 0.487 0 0.323
Q 2 0.346 0 0.338
Q 3 0.347 0 0.308
Q 4 0 0.619 0
Q 5 0 0.559 0
Q 6 0 0.552 0
Q 7 0.502 0 -0.636
Q 8 0.399 0 -0.430
Q 9 0.333 0 0.311
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Teaching data

Table: GAS-SPCA

Variable PC1 PC2 PC3
Q 1 0.483 0 0.320
Q 2 0.376 0 0.331
Q 3 0.328 0 0.224
Q 4 0.110 0.643 0
Q 5 0 0.515 0
Q 6 0 0.567 0
Q 7 0.458 0 -0.658
Q 8 0.394 0 -0.468
Q 9 0.375 0 0.291
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